Consider a linear function f(x)=Ax+B. Let's define g(0)(x)=x and g(n)(x)=f(g(n-1)(x)) for n \gt 0. For the given integer values A, B, n and x find the value of g(n)(x) modulo 109+7.
The only line contains four integers A, B, n and x (1 \le A,B,x \le 109,1 \le n \le 1018) - the parameters from the problem statement.
Note that the given value n can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
Print the only integer s - the value g(n)(x) modulo 109+7.