Today on a math lesson the teacher told Vovochka that the Euler function of a positive integer φ(n) is an arithmetic function that counts the positive integers less than or equal to n that are relatively prime to n. The number 1 is coprime to all the positive integers and φ(1)=1.
Now the teacher gave Vovochka an array of n positive integers a1,a2,...,an and a task to process q queries li ri- to calculate and print modulo 109+7. As it is too hard for a second grade school student, you've decided to help Vovochka.
The first line of the input contains number n (1 \le n \le 200000)- the length of the array given to Vovochka. The second line contains n integers a1,a2,...,an (1 \le ai \le 106).
The third line contains integer q (1 \le q \le 200000)- the number of queries. Next q lines contain the queries, one per line. Each query is defined by the boundaries of the segment li and ri (1 \le li \le ri \le n).
Print q numbers - the value of the Euler function for each query, calculated modulo 109+7.
10 1 2 3 4 5 6 7 8 9 10 7 1 1 3 8 5 6 4 8 8 10 7 9 7 10
\n · · · · · · · · · \n \n · \n · \n · \n · \n · \n · \n · \n
1 4608 8 1536 192 144 1152
\n \n \n \n \n \n \n
7 24 63 13 52 6 10 1 6 3 5 4 7 1 7 2 4 3 6 2 6
\n · · · · · · \n \n · \n · \n · \n · \n · \n · \n
1248 768 12939264 11232 9984 539136
\n \n \n \n \n \n
In the second sample the values are calculated like that:
φ(13 \cdot 52 \cdot 6)=φ(4056)=1248 φ(52 \cdot 6 \cdot 10 \cdot 1)=φ(3120)=768 φ(24 \cdot 63 \cdot 13 \cdot 52 \cdot 6 \cdot 10 \cdot 1)=φ(61326720)=12939264 φ(63 \cdot 13 \cdot 52)=φ(42588)=11232 φ(13 \cdot 52 \cdot 6 \cdot 10)=φ(40560)=9984 φ(63 \cdot 13 \cdot 52 \cdot 6 \cdot 10)=φ(2555280)=539136