There are a set of points S on the plane. This set doesn't contain the origin O(0,0), and for each two distinct points in the set A and B, the triangle OAB has strictly positive area.
Consider a set of pairs of points (P1,P2),(P3,P4),...,(P2k-1,P2k). We'll call the set good if and only if:
k \ge 2. All Pi are distinct, and each Pi is an element of S. For any two pairs (P2i-1,P2i) and (P2j-1,P2j), the circumcircles of triangles OP2i-1P2j-1 and OP2iP2j have a single common point, and the circumcircle of triangles OP2i-1P2j and OP2iP2j-1 have a single common point.
Calculate the number of good sets of pairs modulo 1000000007 (109+7).
The first line contains a single integer n (1 \le n \le 1000) - the number of points in S. Each of the next n lines contains four integers ai,bi,ci,di (0 \le |ai|,|ci| \le 50;1 \le bi,di \le 50;(ai,ci) \neq (0,0)). These integers represent a point .
No two points coincide.
Print a single integer - the answer to the problem modulo 1000000007 (109+7).
10 -46 46 0 36 0 20 -24 48 -50 50 -49 49 -20 50 8 40 -15 30 14 28 4 10 -4 5 6 15 8 10 -20 50 -3 15 4 34 -16 34 16 34 2 17
\n · · · \n · · · \n · · · \n · · · \n · · · \n · · · \n · · · \n · · · \n · · · \n · · · \n
2
\n