5487.Hidden Digits

Time Limit: 4s Memory Limit: 256MB

You are given a sequence of $n$ digits $d_0, d_1, \dots d_{n - 1}$. Find the minimum positive integer $x$ such that for all $0 \le i < n$, the decimal representation of number $x + i$ contains the digit $d_i$.

Input Format(From the terminal/stdin)

Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 10^5$). The description of the test cases follows.

The first line of each test case contains a single integer $n$ ($1 \le n \le 10^6$).

The second line contains a string of $n$ digits $d_0 d_1 \ldots d_{n-1}$ ($0 \le d_i \le 9$).

It is guaranteed that the sum of $n$ over all test cases does not exceed $10^6$.

Output Format(To the terminal/stdout)

For each test case, print a single integer $x$--- the smallest positive integer such that the decimal representation of $x+i$ contains the digit $d_i$ for all $0 \le i < n$.

Sample Input

Copy
6
5
12345
5
01234
3
239
9
998244353
10
1000000007
20
18446744073709551616
 \n
 \n
     \n
 \n
     \n
 \n
   \n
 \n
         \n
  \n
          \n
  \n
                    \n

Sample Output

Copy
1
10
92
45296
701
10367486
 \n
  \n
  \n
     \n
   \n
        \n
Source: NWRRC 2022

Submit

请先 登录

© 2025 FAQs