You are given $n\cdot(m+1)$ coefficients $a_{i,j}$ and $b_i$ which form the following $n$ linear equations:
Your task is to find any $m$ integers $x_1, x_2, \dots, x_m$ that satisfy the given equations.
The first line has two integers $n$ and $m$ : the number of equations and variables.
The next $n$ lines each have $m+1$ integers $a{i,1}, a{i,2}, \dots, a_{i,m}, b_i$ : the coefficients of the $i$ -th equation.
Print $m$ integers $x_1, x_2,\dots, x_m$ : the values of the variables that satisfy the equations. The values must also satisfy $0 \le x_i < 10^9 + 7$ . You can print any valid solution. If no solution exists print only $-1$ .
3 3 2 0 1 7 1 2 0 0 1 3 1 2
· \n · · · \n · · · \n · · · \n
2 1000000006 3
· · \n