There are two line segments: the first goes through the points $(x_1,y_1)$ and $(x_2,y_2)$ , and the second goes through the points $(x_3,y_3)$ and $(x_4,y_4)$ .
Your task is to determine if the line segments intersect, i.e., they have at least one common point.
The first input line has an integer $t$ : the number of tests.
After this, there are $t$ lines that describe the tests. Each line has eight integers $x_1$ , $y_1$ , $x_2$ , $y_2$ , $x_3$ , $y_3$ , $x_4$ and $y_4$ .
For each test, print "YES" if the line segments intersect and "NO" otherwise.
5 1 1 5 3 1 2 4 3 1 1 5 3 1 1 4 3 1 1 5 3 2 3 4 1 1 1 5 3 2 4 4 1 1 1 5 3 3 2 7 4
\n · · · · · · · \n · · · · · · · \n · · · · · · · \n · · · · · · · \n · · · · · · · \n
NO YES YES YES YES
\n \n \n \n \n